a2 United States Patent

O’Connell

US009135016B1

US 9,135,016 B1
Sep. 15, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(1)

(52)

(58)

METHODS AND APPARATUS FOR
MANAGING REPLICATION OF OBJECTS IN
A STORAGE ENVIRONMENT

Mark O’Connell, Westborough, MA
us)

Inventor:

Assignee: EMC Corporation, Hopkinton, MA

(US)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1471 days.

Appl. No.: 12/800,399

Filed: May 14, 2010

Int. Cl1.
GO6F 12/00
GO6F 9/38
GO6r 1107
GO6F 3/06
GO6F 17/30
U.S. CL
CPC

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
.............. GO6F 9/3891 (2013.01); GOGF 3/067
(2013.01); GOGF 3/0619 (2013.01); GO6F
3/0631 (2013.01); GO6F 11/0769 (2013.01);
GO6F 17/30215 (2013.01)
Field of Classification Search

USPC 711/162

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS
8,103,630 B2*

2005/0081007 Al*
2010/0161554 Al*

1/2012 Suzukietal. 707/640
4/2005 Gold et al. . 711/162
6/2010 Datuashvili et al. 707/610

* cited by examiner

Primary Examiner — Jared Rutz

Assistant Examiner — Hamdy S Ahmed

(74) Attorney, Agent, or Firm — Krishnendu Gupta; Joseph
D’ Angelo

(57) ABSTRACT

Some embodiments are directed to replicating a content unit
stored in a first storage environment comprising a first plu-
rality of storage clusters to a second storage environment
comprising a second plurality of storage clusters. The first
storage environment may employ a replication policy, insti-
tuted at a first time, that specifies to which one of the second
plurality of storage clusters content units stored in the first
storage environment are to be replicated. The creation time of
the first content unit may be determined and it may be deter-
mined when the creation time is before the time at which the
first storage environment instituted the replication policy. If
the creation time is not before the first time, one of the second
plurality of storage clusters may be selected to which to
replicate the first content unit based on the replication policy,
and the content unit may be replicated to the selected one of
the second plurality of storage clusters.

20 Claims, 18 Drawing Sheets

Retrieve Content Unit
To Be Replicated

}

Determine Creation
Time of Content Unit

Creation Time
Before Replication Policy
Instituted?

L — 1401

| —— 1403

1409

Perform Global | — 1407

Lookup for Content to

Replicate According

Replication Policy

Unit on Backup
Storage Environment

Content
Unit Found?

1415

Replicate Content 1413

Unit to Cluster that
Already Stores It

Select Cluster to
Which to Replicate
Content Unit

US 9,135,016 B1

Sheet 1 of 18

Sep. 15, 2015

U.S. Patent

NS

90!

NS

P£OI

I Ol

NS
/on.e
NV
/QSN
1SOH
/m.&

NS

NS

qc0!

)

U.S. Patent Sep. 15, 2015 Sheet 2 of 18 US 9,135,016 B1

201
/
_——203b

Cluster 2

FIG. 2

105
\\

Cluster 1

2030\

US 9,135,016 B1

Sheet 3 of 18

Sep. 15, 2015

U.S. Patent

& 9l

Z J9ysnpo

qacog

L J93snp)

bGog—

| Ado)

bgog

Sn\

08V,
1senbay poay

20¢ —

1SOH

//m.S

US 9,135,016 B1

Sheet 4 of 18

Sep. 15, 2015

U.S. Patent

v Ol

10¥ \

h.;\

//how

¢ J493snp L 4838nID
' ooy — |
¥ jusjuod ZAX, Vv jusjuo) ZAX,
}senbay a1Mm §S8JppY jusjuo) 1sanbay a3M sseJppy }usjuo)
/m? odw\ N i
1SOH 1SOH

//N or

US 9,135,016 B1

Sheet 5 of 18

Sep. 15, 2015

U.S. Patent

£06—|

G Il

os—"|

jusjuo) bBuipuigq—uopN
~—gic [T—1s
u# Joy
~— w05
19y
~—q/06
\# 19y
~——ob/0¢6
D}OPDISW 605
~—g0¢

U.S. Patent Sep. 15, 2015 Sheet 6 of 18 US 9,135,016 B1

INVentor. Mark U uonneli

Title: SAFE OBJECT REPLICATION AND
RESTORE IN A FEDERATION OF OBJECT
STORAGE

REPLACEMENT SHEET Sheet 6 0of 18

{ Start)

Initiate Operation to
Modify Content Unit

_—601

603
Perform Search for [

Content Unit on All
Clusters

605

Content
Unit Found on Multiple

Clusters?

No Yes

Disregard Invalid
Content Units

[

Perform Modification
Operation on Sole

Valid Copy of
Content Unit

611

Multiple
Valid Copies of
Content Unit on > 1
Cluster?

End

613 —
Mark All but

One as Invalid

FIG. 6

U.S. Patent Sep. 15, 2015 Sheet 7 of 18 US 9,135,016 B1

(Start)

Receive Request to
Read Content Unit

_— 701

703
Perform Search for |

Content Unit on All
Clusters

705

Content

No Unit Found on Multiple Yes

Clusters?
/709
707
/ Disregard Copies Marked
As Invalid
Return Valid
Copy of

Content Unit 711

Valid
Copies Stored

On > 1 Cluster?

End

/13— Mark All but
One Copy

as Invalid

FIG. 7

U.S. Patent Sep. 15, 2015 Sheet 8 of 18 US 9,135,016 B1

(Start)

Initiate Operation to
Modify Content Unit

803
Perform Search for [

Content Unit on All
Clusters

805

Content Yes

No Unit Found on Multiple
Clusters?
/807 /309
Search for Status
Perform. Modification Content Unit on
Operation on Sole Each Cluster that
Valid Copy of Stores Content Unit

Content Unit

End
811

Status
Content Unit
Found on All Clusters
that Store Content
Unit?

Yes

_—813

Determine Valid
Copy Using Status
Content Unit

To Act 815
in Figure 8B

FIG. 8A

U.S. Patent Sep. 15, 2015 Sheet 9 of 18 US 9,135,016 B1

From Act 811
in Figure 8A

815

Status
Content Unit

that Identifies Valid
Copy Found?

Yes

817 819
y yl

Create Status Content Select One Cluster
Unit on Clusters as Storing Valid Copy
that Don’'t Have One of Content Unit

From Act 807
in Figure 8A

FIG. 8B

U.S. Patent Sep. 15, 2015 Sheet 10 of 18 US 9,135,016 B1

(Start)

Receive Request to
Read Content Unit

_— 901

903
Perform Search for [~

Content Unit on All
Clusters

905

Content
Unit Found on Multiple

Clusters?

/ 907 / 909

No Yes

. Search for Status
Return Valid Copy Content Unit on
of Content Unit Each Cluster that
in Response to Stores Content Unit
Request

End
ar1

Content Unit
Found on All Clusters
that Store Content
Unit?

Yes

913
Determine Valid |

Copy Using Status
Content Unit

To Act 915
in Figure 9B

FIG. 9A

U.S. Patent Sep. 15, 2015 Sheet 11 of 18 US 9,135,016 B1

From Act 911
in Figure 9A

915

Status
Content Unit

that Identifies Valid
Copy Found?

917 919
y yd

Create Status Content Select One Cluster
Unit on Clusters as Storing Valid Copy
that Don’t Have One of Content Unit

From Act 907
in Figure 9A

FIG. 9B

U.S. Patent Sep. 15, 2015 Sheet 12 of 18 US 9,135,016 B1

1001 1003
N\ AN

Object ldentifier T;mvlg::mp
_——1005a
ABC 10—-25-2007 10: 45
_——1005b
DEF 11-18-2008 21: 36
_——1005¢
GHI 12—-14-2009 7:25

\\\1000

FIG. 10

U.S. Patent Sep. 15, 2015 Sheet 13 of 18 US 9,135,016 B1

(Start)

Initiate Operation to
Modify Content Unit

1101

1103
Perform Search for |

Content Unit on All
Clusters

1105

Content
No Unit Found on Multiple Y¢S
Clusters?
/1109
1107 .))
/ Disregard Copies with
Invalid Write Timestamp
Perform Modificaiton value

on Sole Valid Copy

of Content Unit 1111

Multiple Copies
with Valid Write
Timestamp on
> 1 Cluster?

End

17113 —]Set Write Timestamp
for All but One Copy
to Invalid Value

FIG. 11

U.S. Patent Sep. 15, 2015 Sheet 14 of 18 US 9,135,016 B1

1 Start)

Receive Request to
Read Content Unit

1201

1203
Perform Search for [

Content Unit on All
Clusters

1205

Content
No Unit Found on Multiple Yes
Clusters?
/7209
1207
/ Disregard Copies with
Invalid Write Timestamp
Return Sole Valid value

Copy of

Content Unit 1211

Multiple Copies
with Valid Write
Timestamp on
> 1 Cluster?

End

1215—|Set Write Timestamp
for All but One Copy

to Invalid Value

FIG. 12

US 9,135,016 B1

Sheet 15 of 18

Sep. 15, 2015

U.S. Patent

£t Ol

Z Jesnpp L 4918n|D
e uer—1_12
| T—aoe1 oLOSi— 7

/
mon\
Zl swi] 3o uonodijdey 1 swij 3o uoppdldey
\\
21sn J91sn
Z Jeysn mo&\ | Je3sn
T—aqroe1 oroci—

62\

U.S. Patent

Sep. 15, 2015

{ Start)

Sheet 16 of 18

Retrieve Content Unit
To Be Replicated

Determine Creation
Time of Content Unit

Yes

Creation Time

Before Replication Policy

Instituted?

US 9,135,016 B1
| _— 1401
| _— 1403
1405
No
1409

Perform Global

Unit on Backup

Lookup for Content

Storage Environment

Replicate According
to Replication Policy

Yes

Content
Unit Found?

Already Stores

Replicate Content
Unit to Cluster that

| —1413

It

End

1415

Select Cluster to
Which to Replicate
Content Unit

FIG. 14

U.S. Patent

Sep. 15, 2015 Sheet 17 of 18 US 9,135,016 B1

(Start)

Retrieve Content Unit
To Be Replicated

1501

Determine Creation
Time of Content Unit

|— 1503

Yes

Before Replication Policy

1505

Creation Time No

Instituted?

1511
d

Determine Cluster

Perform Global
Lookup for Content
Unit on Backup
Storage Environment

| 1507 Specified by Retention
Policy for Content
Unit and Search for
Content Unit on
That Cluster

Content
Unit Found?

1513

Content

Unit Stored on
Cluster Specified

by Policy?

Yes

1515—_

Unit

Replicate Content

to Cluster

that Stores It End

Return Error

FIG. 15

U.S. Patent Sep. 15, 2015 Sheet 18 of 18 US 9,135,016 B1

/1501

1/0 Interface(s)
L—1603
Microprocessor(s)
—1607
Memory

FIG. 16

US 9,135,016 B1

1
METHODS AND APPARATUS FOR
MANAGING REPLICATION OF OBJECTS IN
A STORAGE ENVIRONMENT

FIELD OF THE INVENTION

The present invention relates to data storage and, more
particularly, to methods and apparatus for managing objects
in a storage environment.

DESCRIPTION OF THE RELATED ART

The capacity and performance of a data storage system
depends on the physical resources of the storage system. For
example, the quantity of data that a storage system is capable
of storing is dependent on the number and capacity of the
physical storage devices that the storage system possesses. As
the quantity of data stored on the storage system approaches
the storage capacity of the storage system, it may be desired
to increase the storage system capacity by adding additional
physical storage devices to the storage system. However,
there may be physical limits imposed by the hardware con-
figuration of the storage system on the number of storage
devices that the storage system may have. Consequently,
when a storage system approaches or nears it storage capac-
ity, it may no longer be possible or desirable to add more
physical storage devices to the storage systems. Rather, ifit is
desired to increase storage capacity, one or more additional
storage systems may be used.

SUMMARY OF THE INVENTION

One embodiment is directed to a method of replicating a
first content unit stored in a first storage environment com-
prising a first plurality of storage clusters to a second storage
environment comprising a second plurality of storage clus-
ters, wherein the first storage environment employs a repli-
cation policy, instituted at a first time, that specifies to which
one of the second plurality of storage clusters content units
stored in the first storage environment are to be replicated.
The method comprises acts of: determining a creation time of
the first content unit; determining whether the creation time is
before the first time; when it is determined that the creation
time is not before the first time: selecting one of the second
plurality of storage clusters to which to replicate the first
content unit based on the replication policy; and replicating
the first content unit to the one of the second plurality of
storage clusters.

Another embodiment is directed to at least one computer
readable medium encoded with instructions that, when
executed, perform the above-described method.

A further embodiment is directed to a computer system
implemented as one of a first plurality of clusters in a first
storage environment comprising: at least one memory that
stores processor-executable instructions for performing a
method of replicating a first content unit stored in the first
storage environment to a second storage environment com-
prising a second plurality of storage clusters, wherein the first
storage environment employs a replication policy, instituted
at a first time, that specifies to which one of the second
plurality of storage clusters content units stored in the first
storage environment are to be replicated; and at least one
microprocessor that executes the processor-executable
instructions to: determine a creation time of the first content
unit; determine whether the creation time is before the first
time; when it is determined that the creation time is not before
the first time: select one of the second plurality of storage
clusters to which to replicate the first content unit based on the

10

15

20

25

30

35

40

45

50

55

60

65

2

replication policy; and replicate the first content unit to the
one of the second plurality of storage clusters.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a distributed storage environ-
ment on which embodiments of the present invention may be
implemented;

FIG. 2 is a block diagram of a host computer interacting
with a storage environment with multiple clusters;

FIG. 3 is a block diagram of a host computer sending a
request for a content unit stored on two different clusters in a
storage environment;

FIG. 4 is a block diagram of multiple host computers
writing the same content to a storage environment having
multiple clusters;

FIG. 5 is a block diagram of a blob/content descriptor file
(CDF) pair;

FIG. 6 is a flow chart of an illustrative process for modify-
ing a content unit stored on multiple clusters in a storage
environment by marking unmodified copies as invalid, in
accordance with some embodiments;

FIG. 7 is a flow chart of an illustrative process for reading
a content unit stored on multiple clusters in a storage envi-
ronment in which copies marked as invalid are disregarded, in
accordance with some embodiments;

FIGS. 8A and 8B are a flow chart of an illustrative process
for modifying a content unit stored on multiple clusters in a
storage environment in which a new content unit is created to
identify the valid copy, in accordance with some embodi-
ments;

FIGS. 9A and 9B are a flow chart of an illustrative process
for reading a content unit stored on multiple clusters in a
storage environment in which the valid copy is determined
from a status content unit, in accordance with some embodi-
ments;

FIG. 10 is a diagram of a database table that associates the
write timestamp for a content unit with an object identifier for
the content unit, in accordance with some embodiments;

FIG. 11 is a flow chart of an illustrative process for modi-
fying a content unit stored on multiple clusters in a storage
environment, in which the write timestamp for invalid copies
is used to identify those copies as invalid, in accordance with
some embodiments;

FIG. 12 is a flow chart of an illustrative process for reading
a content unit stored on multiple clusters in a storage envi-
ronment, in which the valid copy is determined using the
write timestamps for the content units, in accordance with
some embodiments;

FIG. 13 is a diagram of a primary storage environment
having multiple clusters and a backup storage environment
having multiple cluster and serving as a replication target for
the primary storage environment;

FIG. 14 is a flow chart of an illustrative process for repli-
cating a content unit from a primary storage environment to a
backup storage environment, in accordance with some
embodiments;

FIG. 15 is a flow chart of an illustrative process for repli-
cating a previously-replicated content unit from a primary
storage environment to a backup storage environment after
modification of the content unit in the primary storage envi-
ronment, in accordance with some embodiments; and

FIG. 16 is a block diagram of a computer that may be used
in some embodiments to implement certain systems.

US 9,135,016 B1

3
DETAILED DESCRIPTION

1. Challenges Related to Single Instance Storage in Multi-
Cluster Storage Environments

Some embodiments relate to challenges presented in per-
forming single instancing of objects stored in a multi-cluster
distributed content addressable storage environment.

A. Object Addressable Storage Systems

Some storage systems require that the access requests iden-
tify data to be accessed using logical volume and block
addresses that define where the units of data are stored on the
storage system. Such storage systems are known as “block
1/0” storage systems. In some block I/O storage systems, the
logical volumes presented by the storage system to the host
correspond directly to physical storage devices (e.g., disk
drives) on the storage system, so that the specification of a
logical volume and block address specifies where the data is
physically stored within the storage system. In other block
1/0O storage systems (referred to as intelligent storage sys-
tems), internal mapping techniques may be employed so that
the logical volumes presented by the storage system do not
necessarily map in a one-to-one manner to physical storage
devices within the storage system. Nevertheless, the specifi-
cation of a logical volume and a block address used with an
intelligent storage system specifies where associated data is
logically stored within the storage system, and from the per-
spective of devices outside of the storage system (e.g., a host)
is perceived as specifying where the data is physically stored.

In contrast to block I/O storage systems, some storage
systems receive and process access requests that identify a
data unit or other content unit (also referenced to as an object)
using an object identifier, rather than an address that specifies
where the data unit is physically or logically stored in the
storage system. Such storage systems are referred to as object
addressable storage (OAS) systems. In object addressable
storage, a content unit may be identified (e.g., by host com-
puters requesting access to the content unit) using its object
identifier, and the object identifier may be independent of
both the physical and logical location(s) at which the content
unitis stored (although it is not required to be because in some
embodiments the storage system may use the object identifier
to inform where a content unit is stored in a storage system).
From the perspective of the host computer (or user) accessing
a content unit on an OAS system, the object identifier does not
control where the content unit is logically (or physically)
stored. Thus, in an OAS system, if the physical or logical
location at which the unit of content is stored changes, the
identifier by which host computer(s) access the unit of con-
tent may remain the same. In contrast, in a block I/O storage
system, if the location at which the unit of content is stored
changes in a manner that impacts the logical volume and
block address used to access it, any host computer accessing
the unit of content must be made aware of the location change
and then use the new location of the unit of content for future
accesses.

One example of a type of an OAS system is a content
addressable storage (CAS) system. In a CAS system, the
object identifiers that identify content units are content
addresses. A content address is an identifier that is computed,
at least in part, from at least a portion of the content (which
can be data and/or metadata) of its corresponding unit of
content. For example, a content address for a unit of content
may be computed by hashing the unit of content and using the
resulting hash value as the content address. Storage systems
that identify content by a content address are referred to as
content addressable storage (CAS) systems.

25

30

40

45

4

B. Single Instance Storage

Single instance storage is a technique for permitting users
to store only a single copy of the same content unit within the
storage system. For example, if a document is e-mailed to
fifty different e-mail recipients, each e-mail recipient may
wish to archive the document on the same storage system.
However, storing fifty copies of the same document is an
inefficient use of storage space. Thus, in a system that per-
forms single-instance storage, a first of the fifty users would
be permitted to store the document. However, when the sys-
tem receives subsequent requests to store the document (e.g.,
from any of the other 49 recipients of the document), the
system may recognize that it already stores a copy of the
document and may not store additional copies of the docu-
ment in response to these user requests.

The use of content addresses as identifiers for content units
in a CAS storage system may facilitate enforcing single
instance storage. That is, as explained above, the content
address for a content unit may be computed by hashing all or
a portion of the unit of content and using the resulting hash
value as all or part of the content address. When a request to
store a content unit is received, the CAS system may perform
hashing on the content unit using a hash function (e.g., MD5
or any other suitable hash function) to generate a hash value
and may compare that hash value to the hash values in the
content addresses that the CAS system already stores. If there
is a match, thenthe CAS system may determine that it already
stores a copy of the content unit that is requested to be stored.

Some systems that enforce single instance storage of
objects may still create and store mirror copies of objects for
backup and recovery purposes. For example, when an object
is stored on a system, the system may create a mirror copy of
the object that is stored in a different storage location within
the system. In this way, if one copy of the object becomes
unavailable, lost, or corrupted, the other copy may serve as a
backup. However, when enforcing single instance storage,
the system does not create additional copies of an object in
response to user requests to store an object that is already
stored on the storage system.

C. Distributed Storage Environments

In some embodiments, an OAS or CAS system may be
implemented in a distributed storage environment. An
example of a distributed storage environment 100 is shown in
FIG. 1. Distributed storage environment 100 includes a plu-
rality access nodes 101a-101c¢ and a plurality of storage nodes
103a-103e. Access nodes 101 may receive and respond to
access requests from a host computer 105, and storage nodes
103 may store data sent to storage environment 100 by host
computer 105. Access nodes 101 and storage nodes 103 may
be coupled by a network (not shown) and communicate over
the network such that each node may make its presence on the
network known to the other nodes. In this manner, the nodes
may operate together to process access requests and store data
for host computer 105.

Each node may include processing resources (e.g., proces-
sor and memory) and storage devices. The nodes communi-
cate with each other to store data, respond to access requests,
and perform other environment functions. To a user of the
storage environment (e.g., the host computer 105 or an appli-
cation program executing thereon), the storage environment
may appear as single entity. That is, the user need not be aware
that the storage environment includes a plurality of separate
nodes or on which storage node a certain unit of data is stored
or mirrored.

To increase the storage capacity of the storage environment
100, more storage nodes may be added and coupled to the
network. These additional storage nodes may make their

US 9,135,016 B1

5

presence known on the network, thus allowing access nodes
101 to employ the additional storage in the storing of data.
Adding more storage nodes to the storage network without
increasing the number of access nodes may result in the
access nodes acting as a bottleneck for the storage environ-
ment and a degradation in performance. Thus, it may desir-
able when increasing the number of storage nodes to also
increase the number of access nodes.

Storage environment 100 may perform a number of func-
tions, such as determining on which storage node 103 to store
data in response to a write request from host 105, determining
on which storage node 103 data is stored in response to a read
request from host 105, performing garbage collection of data
that may be deleted from the storage environment, enforcing
retention periods that specify a period of time that data should
not be deleted from the storage environment, mirroring data
(i.e., creating one or more mirror copies on different nodes of
the storage environment), self-healing to compensate for fail-
ure of one or more nodes, and other functions. Such functions
may be performed by storage nodes, access nodes, or both,
and performing such functions may cause network traffic
between the nodes.

For example, to perform self-healing functions, other
nodes may detect when a node fails. In response, the environ-
ment 100 may re-direct access requests to data stored on the
failed node to other nodes that store a mirrored copy of that
data and may build another mirror for continued fault toler-
ance. A node may broadcast keep-alive messages on the net-
work to indicate that it is operational and has not failed. If
keep-alive messages from that node are not received by other
nodes, the other nodes may determine that the node has failed.
Adding more nodes to the storage environment causes more
keep-alive messages to be transmitted on the network and
results in more network traffic.

As another example, the storage environment 100 may
maintain an index such as the blob location index (BLI), to aid
in locating data. The BLI may specify on which storage node
units of data are stored. Each access or storage node in the
network may be responsible for administering a portion of the
BLI. Because the BLI may be distributed across the access
and/or storage nodes, maintaining and updating the BL.I when
units of data are written to or deleted from the storage envi-
ronment causes network traffic to be generated among nodes.
Adding more nodes may cause the administration responsi-
bilities of the BLI to be shared among a greater number of
nodes, thus causing a greater amount of network traffic to be
generated.

Other functions, such as performing garbage collection,
locating content on the storage environment (e.g., via a broad-
cast message to all nodes), and re-ranging the BLI (i.e., when
nodes are added or removed from the storage environment),
may cause a greater amount of network traffic as nodes are
added to the storage environment. Such increased network
traffic may result in a decrease in performance of the storage
environment.

D. Multi-Cluster Storage Environments

As discussed above, storage nodes 103 may be added to the
storage environment to increase the storage capacity of the
storage environment. Additionally, access nodes 101 may be
added to counteract degradation in performance caused by
adding the additional storage nodes. However, because add-
ing access nodes and storage nodes causes increased network
traffic, once a certain number of nodes in the storage environ-
ment is reached, the performance benefit gained by adding
additional nodes is offset at least somewhat by the increased
network traffic generated by the nodes in the storage environ-
ment, as well as the increased amount of processing resources

10

15

20

25

30

35

40

45

50

55

60

65

6

used in performing the infrastructure functions (such as those
described above) that support the storage environment. Thus,
as additional nodes are added to the storage environment to
increase storage capacity and/or performance, the overall
performance of the storage environment may increase less
than expected or desired, or might in some cases even
decrease. This performance impact is referenced below as
performance degradation, which term is used herein to refer
to not only actual decreases in performance, but also the
diminishing returns in performance improvements achieved
by the addition of an additional storage resource, such as an
access node or storage node.

In some embodiments, separate storage clusters may be
arranged to work together to provide combined storage. For
example, each of a plurality of storage clusters in a storage
environment may be implemented as a separate OAS or CAS
system. These storage clusters may be independent so that the
addition of an additional storage resource in one cluster does
not cause the performance degradation issues discussed
above for other clusters. As used herein, the term storage
cluster refers to a group of one or more interconnected nodes
that share at least one software utility that logically connects
them. For example, the nodes of a storage cluster may share a
self-healing software utility, such that nodes in a cluster
monitor keep-alive messages transmitted by other nodes in
that cluster, but not by nodes outside the cluster. The nodes
may also share a common BLI so that the BLI of one storage
cluster may be independent of the BLI of any other storage
cluster. The nodes of a storage cluster may also, or alterna-
tively, share other utilities such as a garbage collection utility
and/or a data mirroring utility that keeps track of where data
stored in the cluster is mirrored. In one embodiment, each
node in a cluster knows the address (e.g., an IP address) of
every other node in the cluster, although the present invention
is not limited in this respect.

Because nodes in a storage cluster do not share software
utilities with nodes outside the cluster (e.g., in a different
storage cluster), the internal network traffic and use of pro-
cessing resources of the nodes within one storage cluster does
not affect the performance of any other storage cluster. Con-
sequently, an additional storage cluster may be added to a
storage environment to increase storage capacity without
experiencing the above-described performance degradation
issues.

It should be appreciated that the description of the types of
software utilities that may be shared among nodes in a cluster
(but not shared among nodes in different clusters) is provided
merely for the purposes of illustration, and that the aspects of
the present invention described herein are not limited to use in
a storage environment wherein the nodes in a storage cluster
share the particular types of software utilities discussed
above, or any other particular type of software utility.

In one embodiment of the invention, multiple storage clus-
ters are managed in a manner that is transparent to users (e.g.,
host computers or application programs executing thereon) of
the storage environment, so that users need not know on
which storage cluster a particular unit of data is stored to
access that unit of data. For example, as shown in FIG. 2,
storage environment 201 may include storage clusters 203a
and 2035. Host computer 105 and/or application programs
executing thereon need not be aware the storage environment
201 comprises two independent storage clusters, but rather
may view storage environment 201 as a single unified storage
environment. Thus, application programs that store data to
and retrieve data from the storage environment may treat the
multiple storage clusters as a single storage environment,
without knowledge of on which cluster data written to the

US 9,135,016 B1

7

storage environment is stored. Thus, in one embodiment of
the invention, when an application program (e.g., on a host)
issues a write request for a unit of data to the storage envi-
ronment, it is determined on which storage cluster the unit of
data is to be written, and when the application issues a read
request, it is determined on which storage cluster the data is
stored, both in a manner transparent to the application pro-
gram.

There are variety of possible implementation techniques as
to where the aspects of the computer system that determine on
which storage cluster to store a unit of data and that retrieve a
previously written unit of data from the appropriate cluster
are practiced. Some examples of possibilities are described in
U.S. patent application Ser. No. 10/787,337, titled Methods
And Apparatus For Increasing Data Storage Capacity, and
filedon Feb. 26, 2004. This application is hereby incorporated
by reference in its entirety.

E. Challenges Presented in Connection with Single
Instance Storage in a Multi-Cluster CAS Distributed Storage
Environment

Enforcing single instance storage between storage clusters
in a storage environment that has multiple clusters presents
challenges. For example, if one cluster in a storage environ-
ment receives a request to store a content unit, that cluster
may be able determine whether it already stores a copy of the
content unit, but it may not have information available to it to
be able to determine whether that content unit is stored on any
of the other clusters in the storage environment.

One possible technique for addressing this challenge is,
each time a request to store a content unit on a storage cluster
in a multi-cluster storage environment is received, to send an
instruction to each storage cluster in the storage environment
(either serially or in parallel) to determine whether that stor-
age cluster already stores a copy of the content unit. If any
storage cluster in the storage environment already stores a
copy of the content unit, a new copy of the content need not be
stored in response to the read request. However, this tech-
nique may not be desirable because it increases the amount of
time taken and resources expended to complete processing of
a write request. That is, each a time a request to store a new
content unit is received, each storage cluster in the storage
environment must perform a search to determine whether it
stores a copy of the content unit. This may be a time and
resource intensive process.

Not enforcing single instance storage and allowing users to
store multiple copies of the same content unit on different
storage clusters may also present challenges. For example, if
a copy of a content unit is stored on two different clusters and
each copy has the same identifier, one copy of the content unit
may be modified and thus be inconsistent with the other
content unit. As a result, when a read request for the content
unit is received in the storage environment, the content that is
returned to the user that initiated the request may be different
depending on which storage cluster in the storage environ-
ment processed the read request.

For example, as shown in FIG. 3, storage environment 301
may have two storage clusters 303a and 3035. Each storage
cluster may store a copy of the same content unit and that
content unit may be assigned the object identifier or content
address “ABC.” Thus, as shown in FIG. 3, content unit 3054
is a first copy of the content unit identified by the identifier
“ABC,” and is stored on cluster 303a. Content unit 3055 is a
second copy of the content unit identified by the identifier
“ABC” and is stored on cluster 3035. However, the content of
content unit 3054 may be modified so that it is different from
the content of content unit 3055. If host computer 105 sub-
sequently issues a read request 307 for content unit “ABC,”

20

25

40

45

55

8

the content unit that is returned will be different depending on
whether cluster 303a processes the read request or cluster
3035 processes the read request.

There are a number of possible ways in which two content
units having the same content and the same identifier may be
stored on different clusters in the same storage environment.
One example is shown in FIG. 4. In FIG. 4, storage environ-
ment 401 is a CAS storage environment that includes cluster
403a and cluster 4035. Each of these clusters may be imple-
mented as a distributed CAS storage system. Host computer
407 may issue a write request 409 to store Content A in the
storage environment. Write request 409 may be processed by
cluster 403a. Cluster 403a may store Content A thereon and
may generate a content address for Content A by applying a
hash function to the content address. In the example of F1G. 4,
the content address that is generated and used to identify
Content A is “XYZ.” Cluster 403¢ may return an acknowl-
edgment 411 to host 407 that indicates that Content A was
successfully stored and may include the content address for
Content A in the acknowledgment. Host computer 405 may
subsequently issue a write request 413 to store the same
content, Content A, in storage environment 401. However,
write request 413 may be processed by cluster 4035. Cluster
4035 may process the write request, generate a content
address for Content A, and return acknowledgment 415 to
host 405 that indicates the content address for Content A.
Because cluster 4036 uses the same hashing algorithm to
generate the content address for Content A that was used by
cluster 403q, it generates the same content address (i.e.,
“XYZ”) for Content A that was generated by cluster 403a.
Consequently, a copy of Content A is stored on both cluster 1
and cluster 2, and each copy is identified using the same
identifier

Another possible way in which two content units having
the same content and the same identifier may be stored on
different clusters in the same storage environment is if two
clusters that were initially configured as a replication pair are
reconfigured as co-clusters in a storage environment. A rep-
lication pair is a pair of storage clusters in which one cluster
serves as a primary cluster and the other storage cluster serves
as a backup cluster to the primary cluster. Content units stored
on the primary cluster are replicated to the backup cluster. In
this way, if a content unit becomes lost or corrupted on the
primary cluster or the primary cluster fails, its content may be
recovered from the backup cluster. Because the backup clus-
ter stores copies of the content units stored on the primary
cluster, if the primary cluster and backup cluster are recon-
figured so that they are no longer a replica pair but rather are
co-clusters in a storage environment, these two clusters may
store copies of the same content units that are identified by the
same identifier.

A third possible way in which two content units having the
same content and the same identifier may be stored on differ-
ent clusters in the same storage environment is if a restore
operation is run between two clusters in a storage environ-
ment. This may occur, for example, if a system administrator
accidentally runs the restore operation, or intentionally runs
the restore operation without fully appreciating the conse-
quences. A restore operation is an operation that is used to
recover, from a backup cluster, content units that were stored
on a primary cluster that have become lost (e.g., due to hard-
ware failure on the cluster or some other reason) or corrupted.
The restore operation copies content units from the backup
cluster to a different cluster. If a restore operation is run
between two clusters in the storage environment, content
units stored on one cluster may be copied to the other cluster,

US 9,135,016 B1

9

resulting in identical copies of content units that have the
same identifier being stored on different clusters in the stor-
age environment.

When two or more copies of the same content unit that have
the same identifier are stored on different clusters in a storage
environment, the content of these copies may become incon-
sistent with each other in a number of possible ways.

For example, many storage systems allow users to modify
previously stored content. For example, if it is desired to
modify the content of a content unit, a write request to write
to the content may be sent to and processed by the storage
system. In a multi-cluster storage environment, if two copies
of'a content unit are stored on two different storage clusters in
the storage environment, and a user request to modify the
content unit is processed by only one cluster, the two copies of
the content unit may become inconsistent. As a result, ifa user
subsequently issues a read request for the content unit, the
content that the user receives in response to the request
depends on which cluster processes the read request.

Some storage systems do not allow users to modify previ-
ously-stored content units. That is, once a content unit is
stored on the storage system, users are not permitted to
modify its content. Such content systems are sometimes
referred to as archive storage systems or fixed content storage
systems.

Even in storage systems that do not permit a content unit to
be modified once it has been stored, it is possible that the
content of two different copies of the same content unit stored
on different clusters may become inconsistent.

One way in which this may occur is in a CAS storage
environment in which a blob/CDF architecture is used. A unit
of data in the architecture defined in the CAS applications is
referred to as a blob. A blob may be, for example, the binary
data created by a user or an application program to be stored
on a storage system, such as, for example, a patient x-ray,
company financial records, a digital image, or any other type
of data. When a blob is stored to a CAS system, a content
address is generated for the blob based upon its content in the
manner discussed above.

Each blob may have at least one content descriptor file
(CDF) associated with it. For example, FIG. 5 shows a blob/
CDF pair comprising a CDF 501 and a blob 503. CDF 501
may include metadata 505 and a plurality of references 507a,
5075, .. .,507n. A CDF may reference one or more blobs or
CDFs. Thus, the references 507 may be, for example, refer-
ences to the blobs and/or CDFs referenced by CDF 501. As
shown in FIG. 5, reference 507a is a reference to blob 503.
Metadata 505 may, for example, include the creation date of
CDF 501 (e.g., the date that CDF 501 was initially stored), a
description of the content of blob 503, other metadata per-
taining to the content of blob 503, or any other suitable
metadata.

Like blob 503, a content address that serves as the identifier
for CDF 501 may be generated by hashing CDF 501. In this
respect, CDF 501 may have a binding portion and a non-
binding portion. A binding portion of a content unit is a
portion that contributes to the content address for the content
unit, and a non-binding portion is a portion that does not
contribute to the content address for the content unit. Thus,
for example, the content in the binding portion of the content
unit is hashed to generate the content address, whereas the
content in the non-binding portion is not hashed. For
example, as shown in FIG. 5, CDF 501 has a binding portion
509 and a non-binding portion 511 which includes non-bind-
ing content 511. The content of the binding portion is input to
the hashing function used to generate the content address for

20

30

40

45

10

CDF 501, while the content of the non-binding portion is not
input into the hashing function.

Because non-binding content 513 is not used in generating
the content address for CDF 501, altering the content of
non-binding content 513 does not change the content address
for CDF 501.

A variety of types of mutable information may be stored in
the non-binding portion of a CDF. For example, in FIG. 5,
non-binding content 513 may include information indicating
whether a litigation hold has been put on the content units
referenced by references 507 of CDF 501. A litigation hold
indicates that the content of the content units referenced by
CDF 501 are relevant to an ongoing or anticipated litigation
and, as such, CDF 501 and the content units it references
cannot be deleted until the litigation hold is removed. Thus,
non-binding content 513 may be altered by changing the
information indicating whether a litigation hold is in place.

Another example of mutable information that may be
included in non-binding content 513 is information indicating
whether an event that triggers an event-based retention period
has occurred. A retention period is a period during which a
content unit cannot be deleted. Metadata 505 may store a
retention period for CDF 501 and the content units that it
references. In some situations, the length of the retention
period depends on the time of occurrence of some event. For
example, a hospital may have a policy that a patient’s medical
records are to remain stored for a minimum of five years from
the patient’s death. Thus, metadata 505 may store the length
of the retention period (e.g., five years from patient’s death),
and non-binding content 513 may store information indicat-
ing whether the event upon which the length of the retention
period is based has occurred and/or the time at which that
event occurred. Thus, when the event occurs, information
stored in non-binding content 513 may be updated to indicate
that the event has occurred and/or the time at which the event
occurred. This information may be used to determine when
the retention period expires.

Any other type of mutable information may be stored in
non-binding content such as, for example, pointers to other
related content units that are stored on the CAS system.

In a multi-cluster CAS storage environment that employ a
blob/CDF architecture, if two copies of a CDF are stored on
different clusters in the storage environment, these two copies
may be identified by the same content address, as the binding
(and non-mutable) portions of these two copies are identical.
If the non-binding content of one of these two CDFs changes
(e.g., due to a change in litigation hold status or the occur-
rence of an event associated with an event based retention
policy), the non-binding content of each of these two CDFs
may be different, even though the content address for each of
these two CDF's remains the same. Consequently, determin-
ing which copy of the CDF is the valid copy and which copy
is invalid may present challenges.

Some embodiments described below are directed to
addressing the above-discussed problems arising from mul-
tiple content units with different content but having the same
identifier being stored on different storage clusters in a multi-
cluster storage system. However, the invention is not limited
to addressing any or all of the above-discussed problems.
That is, while some embodiments described below may
address some or all of these problems, some embodiments
may not address any of these problems.

II. Techniques for Addressing Inconsistency in Content Units

A. Content Unit Deletion

In some embodiments, when two or more copies of a
content unit having identical content and the same identifier
are identified as being stored on different storage clustersin a

US 9,135,016 B1

11

multi-clustered storage environment, the duplicate copy or
copies may be deleted such that the content unit is stored on
only one storage cluster in the storage environment.

For example, when a user request to modify a content unit
is received or when an operation that modifies the content of
a content unit is to be performed, a search may be performed
to determine whether there are multiple copies of the content
unit stored on different clusters in the storage environment. If
there are copies of the content unit stored on different clusters,
the copy on one cluster may be modified and the copies on the
other clusters may be deleted. In this way, there are no incon-
sistent copies of the content unit stored on other clusters in the
storage environment.

The inventors have recognized that while this approach
reduces the likelihood that multiple inconsistent content units
having the same identifier are stored on different clusters in a
storage environment, this approach may not be suitable for
some storage environments. That is, some storage environ-
ments may enforce a retention policy that does not permit the
deletion of content units or requires that content units be
retained at least for some minimum period of time. Such
policies may be implemented, for example, to comply with
legal requirements related to the storage of certain types of
data. Thus, even if the content of two duplicate content units
becomes inconsistent, the retention policy of the storage envi-
ronment may not permit deletion of one of those content
units.

B. Parallel Modification Of Content Units

In some embodiments, when two or more copies of a
content unit having identical content and the same identifier
are identified as being stored on different storage clustersin a
multi-clustered storage environment, the content of each
copy may be modified in parallel such that the content of each
content unit stays consistent.

For example, when a user request to modify a content unit
is received or when an operation that modifies the content of
a content unit is to be performed, a search may be performed
to determine whether there are multiple copies of the content
unit stored on different clusters in the storage environment. If
there are copies on different clusters, the modification to the
content may be performed on each copy. In this manner, a
content unit stored on one cluster may be consistent with
copies of the content unit stored on other clusters.

The inventors have recognized that while this approach
reduces the likelihood that multiple inconsistent content units
having the same identifier are stored on different clusters in a
storage environment, situations may still arise in which such
copies may be stored on different clusters in a storage envi-
ronment. For example, if two copies of a content unit are
stored on two different clusters in a storage environment, and
an operation to modify the content of the content unit is to be
performed, a situation may arise in which one cluster is down
(e.g., dueto a hardware or other type of failure) at the time the
operation to modify the content is to be performed. As such,
it cannot be determined whether the failed cluster stores a
copy of the content unit to be modified. Consequently, the
operation to modify the content unit may be performed on the
copy stored on one cluster, but not on the copy stored on the
failed cluster. If the failed cluster later comes back online, the
copy stored on this cluster will be different from and incon-
sistent with the copy that was modified.

C. Marking Content Units

In some embodiments, when two or more copies of a
content unit having identical content and the same identifier
are identified as being stored on different storage clustersin a
multi-clustered storage environment, one cluster may be
deemed as storing the valid copy and the other cluster(s) may

20

25

40

45

50

55

12

be deemed as storing the invalid copy or copies. Information
may be stored in the invalid copy or copies of the content unit
that identifies or “marks” these copies as being invalid.

For example, when a request to modify a content unit is
received or an operation that modifies the content of a content
unit is to be performed, it may be determined whether mul-
tiple copies of the content unit are stored on different clusters.
If multiple copies are stored on different clusters, one copy
may deemed to be the valid copy and the other copy or copies
may be deemed to be invalid copies. The modification opera-
tion may be performed on the valid copy and the invalid
copies may be modified to include information identifying or
marking these copies as being invalid. As such, when a sub-
sequent request to read the content unit is received, each
cluster may determine whether it stores a copy of the content
unit, and each cluster that stores a copy of the content unit
may determine whether its copy of the content unit is valid by
determining whether the content unit includes information
identifying it as invalid. The valid copy of the content unit
may be returned in response to the read request. Similarly,
when a subsequent request to modify a content unit is
received, each cluster may determine whether it stores a copy
of the content unit, and each cluster that stores a copy of the
content unit may determine whether its copy of the content
unit is valid. The valid copy of the content unit may be
modified, while the invalid copies are not updated.

FIG. 6 shows an illustrative process that may be used in
some embodiments to modify a content unit in a multi-cluster
storage environment and to identify the valid copy of such a
content unit when multiple copies exist.

The process begins at act 601, where an operation to
modify a content unit is initiated. The process next continues
to act 603, where a search for the content unit to be modified
is performed one each cluster. The process then continues to
act 605, where it is determined, based on the searches in act
603, whether the content unit to be modified is stored on
multiple clusters. If the content unit is not stored on multiple
clusters, then the one storage cluster that stores the content
unit is deemed to store the valid copy and the process contin-
ues to act 607, where the cluster that stores the content unit
performs the modification operation on the content unit.

If, at act 605, it is determined that the content unit is stored
on multiple clusters, the process continues to act 609, where
any copies of the content unit that include information mark-
ing those content units as invalid are disregarded. The process
next continues to act 611, where it is determined whether
there are multiple copies of the content unit that are not
marked as invalid stored on more than one cluster. If it is
determined that there are not, the process continues to act 607,
where the cluster that stores the sole valid copy of the content
unit performs the modification operation on that content unit.
If, at act 611, it is determined that there are multiple copies of
content units that are not marked as invalid, the process con-
tinues to act 613 where information is stored in all but one of
these content units that indicates or marks the content unit as
being invalid. In this way, one cluster is selected as storing the
valid copy of the content unit, and the other clusters are
deemed to store invalid copies. The selection of the cluster
that stores the valid copy may be made in any of a variety of
ways. For example, the cluster on which the content unit was
most recently stored may be selected as storing the valid copy
or the cluster that has the most available storage capacity may
be selected as storing the valid copy. Any other suitable cri-
terion or criteria may be used to select a cluster as storing the
valid copy, as the invention is not limited in this respect. After
act 613, the process continues to act 607, where the cluster

US 9,135,016 B1

13

that stores the valid copy of the content unit performs the
modification operation on the content unit.

FIG. 7 shows an illustrative process that may be used in
some embodiments to read a content unit in a multi-cluster
storage environment and to identify the valid copy of such a
content unit when multiple copies exist.

The process begins at act 701, where a request to read a
content unit is received. Such a request may be received from,
for example, a host computer or an application program
executing on a host computer.

The process next continues to act 703, where a search for
the content unit to be read is performed one each cluster. The
process then continues to act 705, where it is determined,
based on the searches in act 703, whether the content unit to
be read is stored on multiple clusters. If the content unit is not
stored on multiple clusters, then the one storage cluster that
stores the content unit is deemed to store the valid copy and
the process continues to act 707, where the content unit is
returned from the cluster that stores it.

If, at act 705, it is determined that the content unit is stored
on multiple clusters, the process continues to act 709, where
any copies of the content unit that include information mark-
ing those content units as invalid are disregarded. The process
next continues to act 711, where it is determined whether
there are multiple copies of the content unit that are not
marked as invalid stored on more than one cluster. If it is
determined that there are not, the process continues to act 707,
where the sole valid copy of the content unit is returned in
response to the read request received in act 701. If, at act 711,
it is determined that there are multiple copies of content units
that are not marked as invalid, the process continues to act 713
where information is stored in all but one of these content
units that indicates or marks the content unit as being invalid.
Inthis way, one cluster is selected as storing the valid copy of
the content unit, and the other clusters are deemed to store
invalid copies. The selection of the cluster that stores the valid
copy may be made in any of a variety of ways. For example,
the cluster on which the content unit was most recently stored
may be selected as storing the valid copy or the cluster that has
the most available storage capacity may be selected as storing
the valid copy. Any other suitable criterion or criteria may be
used to select a cluster as storing the valid copy, as the inven-
tion is not limited in this respect. After act 713, the process
continues to act 707, where the content unit is returned from
the cluster that stores it.

D. New Content Unit Creation

In some embodiments, when two or more copies of a
content unit having identical content and the same identifier
are identified as being stored on different storage clustersin a
multi-clustered storage environment, a new content unit,
referred to herein as a status content unit, may be created.
Information may be stored in the status content unit that
indicates that there are multiple copies of the content unit
stored on different clusters, and may indicate which copy is
the valid, on which cluster the valid copy is stored, which
copy or copies are invalid and on which cluster(s) the invalid
copy or copies is stored.

For example, when a request to modify a content unit is
received or an operation that modifies the content of a content
unit is to be performed, it may be determined whether mul-
tiple copies of the content unit are stored on different clusters.
If multiple copies are stored on different clusters, one copy
may deemed to be the valid copy and the other copy or copies
may be deemed to be invalid copies. The modification opera-
tion may be performed on the valid copy and a status content
unit may be stored on each cluster that stores a copy of the
content unit indicating where each copy of the content unit is

10

15

20

25

30

35

40

45

50

55

60

65

14

stored and which copy is the valid copy. As such, when a
subsequent request to read the content unit is received, each
cluster may determine whether it stores a copy of the content
unit, and each cluster that stores a copy of the content unit
may determine whether its copy of the content unit is valid by
locating the status content unit and analyzing the information
stored therein. The valid copy of the content unit may be
returned in response to the read request. Similarly, when a
subsequent request to modify a content unit is received, each
cluster may determine whether it stores a copy of the content
unit, and each cluster that stores a copy of the content unit
may determine whether its copy of the content unit is valid by
locating the status content unit and analyzing the information
stored therein. The valid copy of the content unit may be
modified, while the invalid copies are not updated.

FIG. 8 shows an illustrative process that may be used in
some embodiments to modify a content unit in a multi-cluster
storage environment and to identify the valid copy of such a
content unit when multiple copies exist. The process begins at
act 801, where an operation to modify a content unit is initi-
ated. The process next continues to act 803, where a search for
the content unit to be modified is performed one each cluster.
The process then continues to act 805, where it is determined,
based on the searches in act 803, whether the content unit to
be modified is stored on multiple clusters. If the content unit
is not stored on multiple clusters, then the one copy of the
content unit that exists in the storage environment is deemed
to be the valid copy and the process continues to act 807,
where the cluster that stores the content unit performs the
modification operation on the content unit.

If, at act 805, it is determined that the content unit is stored
on multiple clusters, the process continues to act 809, where
a search for a status content unit associated with the content
unit is performed on each cluster that stores a copy of the
content unit. The process next continues to act 811, where it
is determined whether a status content unit associated with
the content unit to be modified is stored on each cluster that
stores a copy of the content unit to be modified. If it is
determined that such a status content unit is stored on each
cluster that stores a copy of the content unit, the process
continues to act 813, where the information in these status
content units is used to determine which copy is the valid
copy. The process then continues to act 807, where the modi-
fication operation is performed on the valid copy of the con-
tent unit.

If, at act 811, it is determined that each cluster that stores a
copy of the content unit to be modified does not store a status
content unit associated with that content unit, the process
continues to act 815, where it is determined if a status content
unit was located that identifies which copy of the content unit
to be modified is the valid copy. If it is determined that such a
status content unit was located, the process continues to act
817, where a status content unit is created and stored on each
cluster that stores the content unit but does not store a status
content unit for the content unit. The status content unit may
indicate on which cluster the valid copy of the content unit is
stored and/or on which cluster(s) the invalid copy or copies of
the content unit is/are stored. The process then continues to
act 807, where the modification operation is performed on the
valid copy of the content unit.

If, at act 815, it is determined that no status content unit was
located that identifies which copy of the content unit to be
modified is the valid copy, the process continues to act 819,
where one cluster is selected as storing the valid copy. This
selection may be made in any of a variety of ways. For
example, the cluster on which the content unit was most
recently stored may be selected as storing the valid copy or the

US 9,135,016 B1

15

cluster that has the most available storage capacity may be
selected as storing the valid copy. Any other suitable criterion
to select a cluster as storing the valid copy may be employed,
as the invention is not limited in this respect. Once one cluster
is selected as storing the valid copy, the process continues to
act 817, where a status content unit is created and stored on
each cluster that stores the content unit but does not store a
status content unit for the content unit. The status content unit
may indicate on which cluster the valid copy of the content
unit is stored and/or on which cluster(s) the invalid copy or
copies of the content unit is/are stored. The process then
continues to act 807, where the modification operation is
performed on the valid copy of the content unit.

FIG. 9 shows an illustrative process that may be used in
some embodiments to read a content unit in a multi-cluster
storage environment and to identify the valid copy of such a
content unit when multiple copies exist.

The process begins at act 901, where a request to read a
content unit is received in the storage environment. Such a
request may be received from, for example, a host computer
or an application program executing on a host computer.

The process next continues to act 903, where a search for
the content unit to be read is performed one each cluster. The
process then continues to act 905, where it is determined,
based on the searches in act 903, whether the content unit to
be read is stored on multiple clusters. If the content unit is not
stored on multiple clusters, then the process continues to act
907, where the content unit is read from the one cluster in the
storage environment that stores it, and the content unit is
returned to the requesting entity in response to the request.

If, at act 905, it is determined that the content unit is stored
on multiple clusters, the process continues to act 909, where
a search for a status content unit associated with the content
unit is performed on each cluster that stores a copy of the
content unit. The process next continues to act 911, where it
is determined whether a status content unit associated with
the content unit to be read is stored on each cluster that stores
a copy of the content unit to be read. If it is determined that
such a status content unit is stored on each cluster that stores
a copy of the content unit, the process continues to act 913,
where the information in these status content units is used to
determine which copy is the valid copy. The process then
continues to act 907, where the valid copy of the content unit
is read from the cluster that stores it, and the content unit is
returned to the requesting entity in response to the request.

If, at act 911, it is determined that each cluster that stores a
copy of the content unit to be read does not store a status
content unit associated with that content unit, the process
continues to act 915, where it is determined if a status content
unit was located that identifies which copy of the content unit
to beread is the valid copy. Ifit is determined that such a status
content unit was located, the process continues to act 917,
where a status content unit is created and stored on each
cluster that stores the content unit but does not store a status
content unit for the content unit. The status content unit may
indicate on which cluster the valid copy of the content unit is
stored and/or on which cluster(s) the invalid copy or copies of
the content unit is/are stored. The process then continues to
act 907, where the valid copy of the content unit is returned
from the cluster that stores it to the requesting entity in
response to the request.

If, at act 915, it is determined that no status content unit was
located that identifies which copy of the content unit to be
read is the valid copy, the process continues to act 919, where
one cluster is selected as storing the valid copy. This selection
may be made in any of a variety of ways. For example, the
cluster on which the content unit was most recently stored

25

30

40

45

55

16

may be selected as storing the valid copy or the cluster that has
the most available storage capacity may be selected as storing
the valid copy. Any other suitable criterion to select a cluster
as storing the valid copy, as the invention is not limited in this
respect. Once one cluster is selected as storing the valid copy,
the process continues to act 917, where a status content unit is
created and stored on each cluster that stores the content unit
but does not store a status content unit for the content unit.
The status content unit may indicate on which cluster the
valid copy of the content unit is stored and/or on which
cluster(s) the invalid copy or copies of the content unit is/are
stored. The process then continues to act 907, where the valid
copy of the content unit is returned from the cluster that stores
it to the requesting entity in response to the request.

E. Write Timestamp Update

In some embodiments, when a cluster in a multi-cluster
storage environment receives a request to read a content unit,
it may return the requested content unit and additional infor-
mation pertinent to the requested content unit. For example,
the storage cluster may store, external to the content unit,
metadata about the content unit. Such information may
include, for example, information indicating the time at
which the content unit was initially stored in the cluster. This
time may be different from the time of creation of the content
unit because the content unit may have been created outside
of'the cluster and moved into the cluster after its initial time of
creation. The information indicating the time at which the
content unit was initially stored in the cluster in which it is
stored is referred to herein as the “write timestamp” for the
content unit.

As indicated above, a cluster may store the write timestamp
for a content unit external to the content unit, such that the
write timestamp is not part of the content of the content unit.
The write timestamp may be stored and associated with its
content unit in any of numerous possible ways. For example,
as shown in FIG. 10, in some embodiments, the write times-
tamp may be stored in a relational database table and associ-
ated with its content unit via the object identifier for the
contentunit. FIG. 10 shows an illustrative database table 1000
that stores the write timestamps for three different content
units stored on a storage cluster. As shown in FIG. 10, data-
base table 1000 includes three records 1005a, 10055, and
1005¢. Eachrecord includes a two fields. Field 1003 is used to
store the write timestamp for a content unit. Field 1001 is used
to indicate the object identifier of the content unit with which
the write timestamp is associated. In the example of FIG. 10,
each record in table 1000 has only two fields. However, the
number of fields in table 1000 is provided only for illustrative
purposes, as the database table that stores the write times-
tamps for content units may include any suitable number of
fields. In some embodiments, when a storage cluster receives
arequest to read a content unit (e.g., a request issued by a host
computer and/or application program), the storage cluster
may access the write timestamp for the content unit and return
the write timestamp in response to the request.

In situations, when two or more copies of a content unit
having identical content and the same identifier are identified
as being stored on different storage clusters in a multi-clus-
tered storage environment, each cluster may store a different
write timestamp for the content unit because the times of
storage of the content unit on the clusters in the storage
environment may be different.

The inventor has appreciated that the write timestamp for a
content unit may be used to indicate whether a cluster’s copy
of the content unit is a valid copy or an invalid copy. For
example, in some embodiments, when a request to modify a
content unit is received or a write operation is to be performed

US 9,135,016 B1

17

on the content unit, it may be determined whether multiple
copies of the content unit are stored on different clusters. If
multiple copies are stored on different clusters, one copy may
deemed to be the valid copy and the other copy or copies may
be deemed to be invalid copies. The modification operation
may be performed on the valid copy and the write timestamps
for the invalid copies may be set to a value that indicates that
those copies are invalid. Any suitable value may be used to
indicate that the content unit is invalid, as there are numerous
possibilities of values to be used. For example, the binary
representation of the write timestamp value may be set to all
zeros or all ones to indicate that the associated content unit is
invalid. As another example, the write timestamp may be set
to a value indicative of a time that is so far in the future or so
far in the past (e.g., a million years in the future or a million
years in the past) that no write timestamps for valid content
units will have that value. As used herein, the term invalid
value refers to any write timestamp value that indicates that
the copy of the content unit for that value is an invalid copy.

When a subsequent request to read the content unit is
received, each cluster may determine whether it stores a copy
of the content unit, and each cluster that stores a copy of the
content unit may determine whether its copy of the content
unit is valid by analyzing the write timestamp for the content
unit.

The inventors have recognized that this approach provides
the benefit that, because the write timestamps for content
units are stored on the storage cluster and returned in response
to read requests for those content units, repurposing the write
timestamp to indicate whether a content unit is invalid does
not necessitate using additional storage space. Moreover,
because storage clusters may be configured to return the write
timestamp for a content unit in response to a read request for
the content unit, accessing the write timestamp to determine
whether a copy of the content unit is invalid does not impose
a significant additional processing burden or latency in
responding to a read request for the content unit.

FIG. 11 shows an illustrative process that may be used in
some embodiments to modify a content unit in a multi-cluster
storage environment and to identify the valid copy of such a
content unit when multiple copies exist.

The process begins at act 1101, where an operation to
modify a content unit is initiated. The process next continues
to act 1103, where a search for the content unit to be modified
is performed one each cluster. This may be done by issuing a
read request for each content unit to each cluster. In this way,
each cluster that stores a copy of the content unit may return
its copy, along with the associated write timestamp for the
copy. The process then continues to act 1105, where it is
determined, based on the searches in act 1103, whether the
content unit to be modified is stored on multiple clusters. If
the content unit is not stored on multiple clusters, then the one
storage cluster that stores the content unit is deemed to store
the valid copy and the process continues to act 1107, where
the cluster that stores the content unit performs the modifica-
tion operation on the content unit.

If, at act 1105, it is determined that the content unit is stored
on multiple clusters, the process continues to act 1109, where
any copies of the content unit whose associated write times-
tamp has an invalid value is disregarded. The process next
continues to act 1111, where it is determined whether there
are multiple copies of the content unit stored on more than one
cluster that do not have an invalid write timestamp value. If it
is determined that there are not, the process continues to act
1107, where the cluster that stores the sole valid copy of the
content unit performs the modification operation on that con-
tentunit. If, atact 1111, it is determined that there are multiple

10

15

20

25

30

35

40

45

50

55

60

65

18

copies of content units whose write timestamp values are not
invalid, the process continues to act 1113 where the write
timestamp of all but one of these copies is set to the invalid
value. In this way, one cluster is selected as storing the valid
copy of the content unit, and the other clusters are deemed to
store invalid copies. The selection ofthe cluster that stores the
valid copy may be made in any of a variety of ways. For
example, the cluster on which the content unit was most
recently stored may be selected as storing the valid copy or the
cluster that has the most available storage capacity may be
selected as storing the valid copy. Any other suitable criterion
or criteria may be used to select a cluster as storing the valid
copy, as the invention is not limited in this respect. After act
1113, the process continues to act 1107, where the cluster that
stores the valid copy of the content unit performs the modi-
fication operation on the content unit.

FIG. 12 shows an illustrative process that may be used in
some embodiments to read a content unit in a multi-cluster
storage environment and to identify the valid copy of such a
content unit when multiple copies exist.

The process begins at act 1201, where a request to read a
content unit is received. Such a request may be received from,
for example, a host computer or an application program
executing on a host computer.

The process next continues to act 1203, where a search for
the content unit to be read is performed one each cluster. This
may be accomplished, for example, by sending a read request
to each cluster in the storage environment. In this way, each
cluster that stores a copy of the content unit may return its
copy along with the write timestamp associated with the copy.

The process then continues to act 1205, where it is deter-
mined, based on the searches in act 1203, whether the content
unitto beread is stored on multiple clusters. If the content unit
is not stored on multiple clusters, then the one storage cluster
that stores the content unit is deemed to store the valid copy
and the process continues to act 1207, where the content unit
is returned from the cluster that stores it.

If, atact 1205, it is determined that the content unit is stored
on multiple clusters, the process continues to act 1209, where
any copies of the content unit with a write timestamp having
an invalid value are disregarded. The process next continues
to act 1211, where it is determined whether there are multiple
copies of the content unit stored on more than one cluster
whose write timestamp values are not invalid. If it is deter-
mined that there are not, the process continues to act 1207,
where the sole valid copy of the content unit is returned in
response to the read request in act 1201. If, at act 1211, it is
determined that there are multiple copies of content units with
a valid write timestamp value, the process continues to act
1213 where the write timestamp for all but one of the copies
of'the content unit is updated to the invalid value. In this way,
one cluster is selected as storing the valid copy of the content
unit, and the other clusters are deemed to store invalid copies.
The selection of the cluster that stores the valid copy may be
made in any of a variety of ways. For example, the cluster on
which the content unit was most recently stored may be
selected as storing the valid copy or the cluster that has the
most available storage capacity may be selected as storing the
valid copy. Any other suitable criterion or criteria may be used
to select a cluster as storing the valid copy, as the invention is
not limited in this respect. After act 1113, the process contin-
ues to act 1107, where the valid copy of the content unit is
returned in response to the read request in act 1201.

The above-described techniques for using write timestamp
values to indicate whether a cluster’s copy of the content unit
is a valid copy or an invalid copy provide the benefit of an
unambiguous answer as to which copy is the valid copy and

US 9,135,016 B1

19

which copy is invalid. Thus, for example, using this tech-
nique, each time a content unit that is stored on two different
clusters of a federation is read, the same copy of the content
unit would be identified as being the valid copy and the other
copy or copies would be identified as being invalid. This is
because, if the write timestamps for all but one of the copies
are set to the invalid value, each read request for the content
unit would result in the one of the copies with the valid write
timestamp value being identified as the valid copy. In cases
where there are multiple copies of a content unit stored on
different clusters of a federation and more than one have a
valid write timestamp value, the same content unit would be
identified as the valid copy each time a read request for the
content unit is received, because each user uses the same
algorithm to determine, based at least in part on the value of
the write timestamp, which copy of multiple copies that have
a valid write timestamp value is the valid one. Thus, for
example, if two users were to simultaneously issue requests
for the content unit, each user would identify the same copy of
the content unit as being the valid one because each user
would apply the same algorithm, based at least in part on the
write timestamp values of the multiple copies, to determine
which copy is valid.

III. Replication

As discussed above, in some situations it may be desired to
replicate content units stored in a primary storage environ-
ment to a secondary backup storage environment, so that if a
failure occurs that causes content units stored on the primary
storage environment to become lost, corrupted, or tempo-
rarily unavailable, the content units may be recovered from
the backup storage environment.

The inventor has appreciated that, when replicating content
units from a primary multi-cluster storage environment to a
backup multi-cluster storage environment, situations may
arise in which inconsistent copies of a content unit having the
same identifier are stored on different storage clusters in the
backup storage environment. For example, FIG. 13 shows a
primary storage environment 1301 having clusters 13034 and
13035 and a backup storage environment 1305 having storage
clusters 1307a and 13075. In the example of FIG. 13, storage
cluster 1303a stores a content unit 1309, which is replicated
to cluster 1311 at time T1 and is replicated to cluster 13075 at
a later time T2. If the content of content unit 1309 were
modified in between time T1 and time T2 (e.g., in any of the
manners discussed above) the content of content units 1311
and 1313 may be inconsistent. Thus, if it is ever desired to
restore the content unit from the backup storage environment
(e.g., if cluster 1303a experiences a failure), determining
which copy of the content unit is the valid one and/or which
copy to restore to the primary storage environment may
present challenges.

Another situation in which inconsistent copies of a content
unit may be stored on different storage clusters in a backup
storage environment is if a content unit on a first cluster in the
primary storage environment is replicated to a first cluster in
a backup storage environment. If the content unit in the pri-
mary storage environment is subsequently moved to a second
cluster in the primary storage environment, this second clus-
ter may be unaware that the content unit has already been
replicated to the backup storage environment and may repli-
cate the content unit to a second cluster in the backup storage
environment. If the content of the content unit was modified
in between the two replications, then the replica copies of the
content unit stored on the first and second clusters of the
backup storage environment may be inconsistent.

One technique for reducing the likelihood that inconsistent
copies of a content unit having the same identifier may be

20

25

30

40

45

50

55

65

20

replicated to different storage clusters in a backup storage
environment is to, prior to replicating the content unit, per-
form a search for the content unit on each cluster in the
backup storage environment to determine whether one of
these clusters already stores the content unit. If so, then the
content unit may be replicated to the cluster that already
stores it, so that it replaces the previously-replicated copy of
the content unit on that cluster. The inventor has recognized
that this technique involves inefficiencies in that, in order to
replicate a content unit, a search for the content unit is per-
formed on each cluster in the backup storage environment.
Performing this global search increases the latency in repli-
cating a content unit and consumes processing resources on
the clusters in the backup storage environment.

Thus, in some embodiments, the primary storage environ-
ment may be configured to apply a standard replication policy
that specifies to which cluster in a backup storage environ-
ment a content unit is to be replicated based on some
unchanging attribute of the content unit. For example, the
replication policy may specify to which cluster a content unit
is to be replicated based on the object identifier of the content
unit. As one possible example, if the backup storage environ-
ment has two clusters, the replication policy may specify that
content units with even object identifiers (i.e., object identi-
fiers whose binary value is an even value) are replicated to
cluster 1 in the backup storage environment and content units
with odd object identifiers (i.e., object identifiers whose
binary value is an odd value) are replicated to cluster 2 in the
backup storage environment. In this way, a global lookup
need not be performed to determine to whether and to which
storage cluster a content unit has been replicated, as this may
be determined using the storage policy.

The inventor has recognized that, in some situations, such
a replication policy may be put in place after a storage envi-
ronment has been in use for some period of time and has
replicated some content units to a backup storage environ-
ment. In such situations, a global lookup may be performed
for content units created before the replication policy was put
in place, and the replication policy may be applied to deter-
mine where content units created after the replication policy
was put in place would have been replicated.

FIG. 14 shows a flow chart of a process that may be per-
formed by a cluster in a primary storage environment to
replicate a content unit to a backup storage environment that
that cluster has not previously replicated to the backup stor-
age environment. The process begins at act 1401, where a
content unit that is to be replicated is retrieved. The process
next continues to act 1403, where the time of creation of the
content unit to be replicated is determined. The time of cre-
ation of the content unit may be determined in any suitable
way. For example, the time of creation may be stored in the
content of the content unit or may be stored externally, as
metadata associated with the content unit. In this respect, it
should be appreciated that the creation time of the content unit
is different from the above-discussed write timestamp. That
is, the creation time of the content unit indicates the time at
which the content unit was initially created, whereas the write
timestamp for the content unit indicates the time at which the
content unit was first stored in the storage cluster in which it
is stored.

Once the creation time of the content unit is determined,
the process continues to act 1405, where it is determined
whether the content unit was created before the replication
policy was instituted. If it is determined that the content unit
was created after the replication policy was instituted, then
the process continues to act 1409, where the content unit is
replicated to the storage cluster in the backup storage envi-

US 9,135,016 B1

21

ronment specified by the replication policy. In this way, if
another cluster in the primary storage environment has
already replicated the content unit to the backup storage envi-
ronment, then the replication performed at act 1409 will cause
the previously-replicated content unit to be replaced with the
content unit to be replicated.

If, at act 1405, it is determined that the content unit to be
replicated was created before the replication policy was insti-
tuted, the process continues to act 1407, where a search for the
content unit is performed on each cluster in the backup stor-
age environment. The process next continues to act 1411,
where it is determined if the content unit was found on any of
the clusters in the backup storage environment. If the content
unit was found on one of the storage clusters, the process
continues to act 1413, where the content unit to be replicated
is replicated to the storage cluster that already stores the
content unit (i.e., such that the previously-stored copy is
replaced). If the content unit was not found on any of the
clusters in the backup storage environment, the process con-
tinues to act 1415, where one cluster is selected to store the
replicated content unit and the content unit is replicated to that
cluster.

The inventors have recognized that, after a cluster has
replicated a content unit, the content of the content unit may
be modified (e.g., in any of the ways discussed above). When
a content unit that has been replicated is modified, it may be
desired to replace the previously-stored content unit with the
modified content unit on the backup storage environment.
Thus, FIG. 15 shows a flow chart of a process that may be
performed by a cluster in a primary storage environment to
replicate a previously-replicated content unit to a backup
storage environment after the content of the content unit has
been modified. The process begins at act 1501, where a con-
tent unit that has been modified and is to be replicated is
retrieved. The process next continues to act 1503, where the
time of creation of the content unit to be replicated is deter-
mined. The time of creation of the content unit may be deter-
mined in any suitable way. For example, the time of creation
may be stored in the content of the content unit or may be
stored externally, as metadata associated with the content
unit.

Once the creation time of the content unit is determined,
the process continues to act 1505, where it is determined
whether the content unit was created before the replication
policy was instituted. If it is determined that the content unit
was not created before the replication policy was instituted,
then the process continues to act 1511, where the replication
policy is accessed to determine which cluster in the backup
storage environment the policy specifies as the replication
target for the content unit. The process continues to act 1513,
where a search is performed on the cluster in the backup
storage environment identified in act 1511 to determine if the
previously-replicated copy of the content unit is stored on that
cluster. If the content unit is stored on that cluster, the process
continues to act 1515, where the replication is performed to
the cluster in the backup storage environment that already
stores the content unit (i.e., so that the modified content unit
replaces the previously-replicated copy). If, at act 1513, it is
determined that the content unit is not stored on the cluster
identified in act 1511, the process continues to act 1507,
where a search for the content unit is performed on each
cluster in the backup storage environment. The process next
continues to act 1509, where it is determined if, as a result of
the search performed in act 1507, the content unit was found
on one of the clusters. If the content unit was not found, then
the process continues to act 1517, where an error is returned.
Ifthe content unit was found, then the process continues to act

25

30

40

45

22

1515, where the replication is performed to the cluster in the
backup storage environment that already stores the content
unit (i.e., so that the modified content unit replaces the pre-
viously-replicated copy).

If, at act 1505, it is determined that the content unit was
created before the replication policy was instituted. the pro-
cess proceeds to act 1507, where a search for the content unit
is performed on each cluster in the backup storage environ-
ment. The process next continues to act 1509, where it is
determined if, as a result of the search performed in act 1507,
the content unit was found on one of the clusters. If the
content unit was not found, then the process continues to act
1517, where an error is returned. If the content unit was found,
then the process continues to act 1515, where the replication
is performed to the cluster in the backup storage environment
that already stores the content unit (i.e., so that the modified
content unit replaces the previously-replicated copy).

IV. Additional Information

The storage clusters and host computers described above
may be implemented in any suitable way. In embodiments in
which a storage cluster is a distributed storage system, each
node may be implemented as a computer. In embodiments in
which a storage cluster is not distributed, the storage cluster
itself may be implemented as a computer. The host computers
described above may also each be implemented as a com-
puter.

FIG. 16 is a block diagram of a computer that may be used,
in some embodiments, to implement a storage cluster, node in
a storage cluster, or a host computer. As shown in FIG. 16,
computer 1601 includes a hardware microprocessor(s) 1603,
an input/output (I/O) interface(s) 1605, and a memory 1607.
Memory 1607 may include any suitable type of memory,
including one or more storage devices, a system main
memory, a cache, or any other suitable type of memory.
Memory 1607 may store, inter alia, processor executable
instructions that are executed by microprocessor(s) 1603.
Microprocessor(s) 1603 may include one or more general
purpose hardware processors and may execute the processor-
executable instructions stored in memory 1607. /O inter-
face(s) 1605 may be any suitable interface(s) used to receive
information from and send information to any entity external
to computer 1601.

The above-described embodiments of the present inven-
tion can be implemented in any of numerous ways. For
example, the embodiments may be implemented using hard-
ware, software or a combination thereof. When implemented
in software, the software code can be executed on any suitable
processor or collection of processors, whether provided in a
single computer or distributed among multiple computers. It
should be appreciated that any component or collection of
components that perform the functions described above can
be generically considered as one or more controllers that
control the above-discussed functions. The one or more con-
trollers can be implemented in numerous ways, such as with
dedicated hardware, or with general purpose hardware (e.g.,
one or more processors) that is programmed using microcode
or software to perform the functions recited above.

In this respect, it should be appreciated that one implemen-
tation of the above-described embodiments comprises at least
one computer-readable medium encoded with a computer
program (e.g., a plurality of instructions), which, when
executed on a processor, performs the above-discussed func-
tions of these embodiments. As used herein, the term com-
puter-readable medium encompasses any computer-readable
medium that can be considered to be a process, a machine, a
manufacture, and/or a composition of matter, but does not
encompass any medium that cannot be considered to be a

US 9,135,016 B1

23

process, a machine, a manufacture, and/or composition of
matter. A computer-readable medium may be, for example, a
tangible medium on which computer-readable information
may be encoded or stored, a storage medium on which com-
puter-readable information may be encoded or stored, and/or
a non-transitory medium on which computer-readable infor-
mation may be encoded or stored. Examples of computer-
readable media include a computer memory (e.g., a ROM, a
RAM, a flash memory, or other type of computer memory), a
magnetic disc or tape, an optical disc, and/or other types of
computer-readable media that can be considered to be a pro-
cess, a machine, a manufacture, and/or a composition of
matter.

The computer-readable medium can be transportable such
that the program stored thereon can be loaded onto any com-
puter environment resource to implement the aspects of the
present invention discussed herein. In addition, it should be
appreciated that the reference to a computer program which,
when executed, performs the above-discussed functions, is
not limited to an application program running on a host com-
puter. Rather, the term computer program is used herein in a
generic sense to reference any type of computer code (e.g.,
software or microcode) that can be employed to program a
processor to implement the above-discussed aspects of the
present invention.

It should be appreciated that in accordance with several
embodiments of the present invention wherein processes are
implemented in a computer readable medium, the computer
implemented processes may, during the course of their execu-
tion, receive input manually (e.g., from a user).

In various examples described above, content addresses
were described to include alphabetic characters ‘A’-*7’. It
should be understood that these content addresses were given
only as examples, and that content addresses may include any
alphanumeric character, series of bits, or any other suitable
character, as the invention is not limited in this respect.

The phraseology and terminology used herein is for the
purpose of description and should not be regarded as limiting.
The use of “including,” “comprising,” “having,” “contain-
ing”, “involving”, and variations thereof, is meant to encom-
pass the items listed thereafter and additional items.

Having described several embodiments of the invention in
detail, various modifications and improvements will readily
occur to those skilled in the art. Such meodifications and
improvements are intended to be within the spirit and scope of
the invention. Accordingly, the foregoing description is by
way of example only, and is not intended as limiting. The
invention is limited only as defined by the following claims
and the equivalents thereto.

2 <

What is claimed is:

1. A method of replicating a first content unit stored in a
first storage environment comprising a first plurality of stor-
age clusters to a second storage environment comprising a
second plurality of storage clusters, wherein the first storage
environment employs a replication policy, instituted at a first
time, that specifies to which one of the second plurality of
storage clusters content units stored in the first storage envi-
ronment are to be replicated, the method comprising acts of:

determining a creation time of the first content unit;

determining whether the creation time is before the first
time;

when it is determined that the creation time is not before the

first time:

selecting one of the second plurality of storage clusters
to which to replicate the first content unit based on the
replication policy; and

10

15

20

25

30

40

45

50

55

65

24

replicating the first content unit to the one of the second
plurality of storage clusters; and

when it is determined that the creation time is before the

first time:
searching storage clusters of the second plurality of stor-
age clusters for the first content unit.

2. The method of claim 1, wherein the act of determining
the creation time of the first content unit comprises obtaining
the creation time from the content of the first content unit.

3. The method of claim 1, wherein:

searching storage clusters of the second plurality of storage

clusters for the first content unit, comprises:
sending a read request for the first content unit to each of
the second plurality of storage clusters; and

the method further comprises, when a response is received

from one of the second plurality of storage clusters indi-

cating that it stores the first content unit:

replicating the first content unit to the one of the second
plurality of storage clusters.

4. The method of claim 3, wherein the content unit is
identified in the first and second storage environments via an
object identifier assigned to the content unit, and the read
request identifies the content unit via the object identifier.

5. The method of claim 4, wherein the object identifier
assigned to the content unit comprises a content address that
is generated, at least in part, from at least a portion of the
content of the content unit.

6. The method of claim 4, wherein the act of selecting the
one of the second plurality of storage clusters to which to
replicate the first content unit based on the replication policy,
further comprising:

determining which one of the second plurality of storage

cluster the replication policy specifies as the replication
target for the first content unit based on the object iden-
tifier for the content unit.

7. The method of claim 1, wherein the first time is after a
time at which the first storage environment began replicating
content units to the second storage environment.

8. At least one non-transitory computer readable medium
encoded with instructions that when executed in a first storage
environment comprising a first plurality of storage clusters,
perform a method of replicating a first content unit stored in
the first storage environment to a second storage environment
comprising a second plurality of storage clusters, wherein the
first storage environment employs a replication policy, insti-
tuted at a first time, that specifies to which one of the second
plurality of storage clusters content units stored in the first
storage environment are to be replicated, the method com-
prising acts of:

determining a creation time of the first content unit;

determining whether the creation time is before the first

time;

when itis determined that the creation time is not before the

first time:

selecting one of the second plurality of storage clusters
to which to replicate the first content unit based on the
replication policy; and

replicating the first content unit to the one of the second
plurality of storage clusters; and

when it is determined that the creation time is before the

first time:
searching storage clusters of the second plurality of stor-
age clusters for the first content unit.

9. The at least one non-transitory computer readable
medium of claim 8, wherein the act of determining the cre-
ation time of the first content unit comprises obtaining the
creation time from the content of the first content unit.

US 9,135,016 B1

25

10. The at least one non-transitory computer readable
medium of claim 8, wherein:

searching storage clusters of the second plurality of storage

clusters for the first content unit, comprises:
sending a read request for the first content unit to each of
the second plurality of storage clusters; and

the method further comprises, when a response is received

from one of the second plurality of storage clusters indi-

cating that it stores the first content unit:

replicating the first content unit to the one of the second
plurality of storage clusters.

11. The at least one non-transitory computer readable
medium of claim 10, wherein the content unit is identified in
the first and second storage environments via an object iden-
tifier assigned to the content unit, and the read request iden-
tifies the content unit via the object identifier.

12. The at least one non-transitory computer readable
medium of claim 11, wherein the object identifier assigned to
the content unit comprises a content address that is generated,
at least in part, from at least a portion of the content of the
content unit.

13. The at least one non-transitory computer readable
medium of claim 11, wherein the act of selecting the one of
the second plurality of storage clusters to which to replicate
the first content unit based on the replication policy, further
comprising:

determining which one of the second plurality of storage

cluster the replication policy specifies as the replication
target for the first content unit based on the object iden-
tifier for the content unit.

14. The at least one non-transitory computer readable
medium of claim 8, wherein the first time is after a time at
which the first storage environment began replicating content
units to the second storage environment.

15. A computer system implemented as one of a first plu-
rality of clusters in a first storage environment comprising:

at least one memory that stores processor-executable

instructions for performing a method of replicating a
first content unit stored in the first storage environment
to a second storage environment comprising a second
plurality of storage clusters, wherein the first storage
environment employs a replication policy, instituted at a
first time, that specifies to which one of the second
plurality of storage clusters content units stored in the
first storage environment are to be replicated; and

at least one microprocessor that executes the processor-

executable instructions to:

10

15

20

25

30

35

40

45

26

determine a creation time of the first content unit;
determine whether the creation time is before the first
time;
when it is determined that the creation time is not before
the first time:
select one of the second plurality of storage clusters to
which to replicate the first content unit based on the
replication policy; and
replicate the first content unit to the one of the second
plurality of storage clusters; and
when it is determined that the creation time is before the
first time:
search storage clusters of the second plurality of stor-
age clusters for the first content unit.

16. The computer system of claim 15, wherein the at least
one microprocessor executes the processor-executable
instructions to:

obtain the creation time from the content of the first content

unit.

17. The computer system of claim 15, wherein:

search storage clusters of the second plurality of storage

clusters for the first content unit, comprises:

send a read request for the first content unit to each ofthe
second plurality of storage clusters; and

the at least one microprocessor further executes the pro-
cessor-executable instructions to, when a response is
received from one of the second plurality of storage
clusters indicating that it stores the first content unit:

replicate the first content unit to the one of the second
plurality of storage clusters.

18. The computer system of claim 17, wherein the content
unit is identified in the first and second storage environments
via an object identifier assigned to the content unit, and the
read request identifies the content unit via the object identi-
fier.

19. The computer system of claim 18, wherein the object
identifier assigned to the content unit comprises a content
address that is generated, at least in part, from at least a
portion of the content of the content unit.

20. The computer system of claim 18, wherein the wherein
the at least one microprocessor executes the processor-ex-
ecutable instructions to:

determine which one of the second plurality of storage

cluster the replication policy specifies as the replication
target for the first content unit based on the object iden-
tifier for the content unit.

#* #* #* #* #*

